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Nonlinear Schrödinger equation in nematic liquid crystals
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~Received 1 June 1998!

We derive the amplitude equation, in the weakly nonlinear regime, for an optical wave packet that propa-
gates in an initially undistorted nematic liquid crystal. By using the dyad representationQi j , we find the
retarded and nonlocal equation for the nematic configuration and solve it in Fourier space. This allows us to
calculate the amplitude dependent dispersion relation for a nematic liquid crystal in a given initial undistorted
stationary state. We consider a linearly polarized wave packet that travels along the principal axis of the
nematic dielectric tensor. We find a nonlinear Schro¨dinger equation for the amplitude, which includes an
additional quadratic term with dissipation.
@S1063-651X~98!09310-6#

PACS number~s!: 61.30.Gd, 77.84.Nh, 42.65.-k
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I. INTRODUCTION

In recent years there has been a great deal of intere
the nonlinear optics of liquid crystals because of the gi
optical nonlinearity of these materials~a factor of 6–10 or-
ders of magnitude larger@1# than that of doped glasses! and
the strong nonlinear effects@2# that can be achieved in nem
atic liquid crystals by using laser with moderate intens
(kW/cm2). Some recent experiments@3# using continuous
beams have shown the presence of steady spatial pattern
cylindrical @3# and planar@4# geometries. The basic mech
nism that governs these time-independent patterns is the
ance between the nonlinear refraction~self-focusing! and the
spatial diffraction of the nematic liquid crystal. A study o
these experiments using separation of scales@5,6# shows that
the field amplitude at the center of a Gaussian beam~inner
solution! follows a nonlocal nonlinear Schro¨dinger ~NLS!
equation that is able to describe the undulation and filam
tion observed in the experiments.

A distinct result is obtained when the propagation of wa
packets instead of continuous beams is considered. In
case there exists the possibility of stable and robust soli
wave solutions~optical solitons! when the equilibrium be-
tween dispersion and self-focusing is reached. This poss
ity for a planar waveguide in a specific distorted configu
tion has been previously considered@7#; however, the lossy
and nonlocal aspects of the director dynamics were
glected.

The aim of the present work is to take into account
time dependence and nonlocal effects both in the light an
the nematic liquid crystal by using the dyad representa
Qi j of the nematic orientation in describing optical puls
that travel in a nematic material. One of the advantages
the dyad representation is that in the weakly nonlinear
gime the relation betweenQi j and the electric field dyad is

*Author to whom correspondence should be addressed.
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linear and as a consequence the nonlocal effects can
readily incorporated.

The outline of the paper is as follows. In Sec. II we deri
from the Hemlholtz free energy the dynamical equation
the dyadQi j in terms of the nonlocal polarization vector. I
Sec. III we expressQi j in terms of the electric field for a
weakly nonlinear regime and find a closed nonlocal and
tarded equation for the electric field. In Sec. IV, we consid
the amplitude equation for a linearly polarized narrow-ba
wave packet and show that it is the NLS equation with
additional complex quadratic term. In Sec. V we calcula
characteristic parameters of the soliton and compare th
with those in glass fibers. In Sec. VI we summarize our
sults.

II. BASIC EQUATIONS

The Hemholtz free energy for a nematic liquid crystal
the presence of an external optical fieldEa can be written as

F5E
V
dVF, ~2.1!

where the energy densityF is given by@8#

F5
L1

2
]bQag]bQag1

L2

2
]aQag]bQbg1

L3

2
]aQbg]gQba

2
DmEm* 1Dm* Em

2
2

Qab

2
~Da

aEb* 1Da
a* Eb!, ~2.2!

where L1 , L2 , and L3 are elastic constants,Qmn5nmnn ,
with nm the nematic director, andDa ,Da

a are displacemen
vectors defined by the nonlocal and retarded relations

Da~rW,t !5E drW83dt8e'~rW2rW8,t2t8!Ea~rW8,t8! ~2.3!

and
5855 © 1998 The American Physical Society
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Da
a~rW,t !5E drW83dt8ea~rW2rW8,t2t8!Ea~rW8,t8!. ~2.4!

Equation~2.2! assumes that the degree of orientational ord
usually described by the order parameterS, is constant. This
is a reasonable approximation for temperatures far from
nematic-isotropic transition and for modest fields.

To obtain the equation of motion it is necessary to d
scribe the generalized thermodynamic force acting on
dyadQbg . For this purpose we calculate the variation ofF
in Eq. ~2.2! with respect toQab , with the constraints tha
Qbg is idempotent and symmetric, which follows fromn̂•n̂
51. In the spirit of Ref.@9# , we write the free energy in
terms of the nonsymmetric and nonidempotent tensorQab

5Qab
0 1Qba

0 2(Qag
0 Qgb

0 1Qba
0 Qag

0 )/2 and consider varia

tionssma of the tensorQbl
0 (rW) such thatsml vanishes on the

sample boundaries. In this way we obtain

Qlb5Qab
0 1@~dla2Qla

0 !dbm1~dba2Qba
0 !dlm#sma ,

~2.5!

whereQlb
0 is an arbitrary tensor about which variations a

considered. The term in the square brackets is a projec
operator that projects out parts ofsma that give rise to the
nonsymmetric and nonidempotent contributions. Substitu
into Eq. ~2.1! gives

F5F02E h̃lbslbd3rW, ~2.6!

where h̃lb52(dF/dQma)@(dla2Qla)dbm1(dba

2Qba)dlm#. Sincesab is an unconstrained variation,h̃lb is
the thermodynamic force acting onQlb . Here
dF/dQlb52hlb is the molecular field of de Gennes@10#.
The dynamical equation forQlb , in the absence of flow, is
given by the equilibrium betweenh̃lb and the viscous force
that is,

g
]Qlb

]t
5h̃lb , ~2.7!

whereg is a viscosity coefficient.
We restrict our analysis to consider the simple case o

equal elastic constant approximation (K[K15K25K3) for
which L250. In this case

ham5L1]v]vQam1Re$Da
aEm* %, ~2.8!

where Re denotes the real part; thus the equation of motio
given by

g
]Qlb

]t
5@~dla2Qla!dbm1~dba2Qba!dlm#

3$L1]v]vQma1Re~Dm
a Ea* !%. ~2.9!

It is important to point out that Eq.~2.9! reduces to the
corresponding equation forn̂ @9# if we substitute Qmn

5nmnn . Following the usual procedure for decoupling Ma
r,

e

-
e

on

n

n

is

well’s equations, it is straightforward to show that the ele
tric field propagating in a nonmagnetic nematic is govern
by the equation

]m]mEl2]l]mEm1mm

]2

]t2
~Dl1Q

lm
Dm

a !50 ~2.10!

in SI units. Heremm is the magnetic susceptibility andDl

and Dl
a are given by Eqs.~2.4!. Notice that Eqs.~2.9! and

~2.10! provide the complete general coupled dynamics of
nematic liquid crystal and electromagnetic field in the dy
representation.

III. WEAKLY NONLINEAR DYNAMICS

We consider the weakly nonlinear regime where the
rector is weakly distorted by the field. We consider a line
perturbationqlb of a given initial stationary stateQlb

0 , that
is, Qlb5Qlb

0 1qlb . Substitution of this expression into Eq
~2.9! yields

g
dqlb

dt
5@~dla2Qla

0 !dbm1~dba2Qba
0 !dlm#

3~L1]s]sqma1Re$Dm
a Ea* %!, ~3.1!

where we have kept only terms linear inqlb . In general, the
unperturbed stateQma has to satisfy the condition

@~dla2Qla
0 !dbm1~dba2Qba

0 !dlm#]s]sQma
0 50.

~3.2!

For simplicity, here we restrict our analysis to a configu
tion such that]s]sQma

0 50. We proceed to solve the linea
equation forqlb @Eq. ~3.1!#. The Fourier transform ofqlb is

q̃lb~kW ,v!5E ekW•rW2 ivtqlb~rW,t !d3x dt. ~3.3!

In terms of this, Eq.~3.1! gives

$~ ivg1L1kW•kW !dba2L1kW•kWQba
0 %Qmg

0 q̃ma

5Qmg
0 @dba2Qba

0 #Re$D̃a
a+Ẽm* ~kW ,v!%, ~3.4!

where we have multiplied through byQlg
0 and used its idem-

potent property Qlg
0 Qla

0 5Qga
0 . Here Ẽa(kW ,v) and

D̃m(kW ,v) denote the Fourier transforms of the displacem
and the electric field vector, respectively, and+ indicates the
convolution defined by

D̃a
a+Ẽm* ~kW ,v!

5E dkW1dv1dkW2dv2D̃a
a~kW1 ,v1!Ẽm* ~kW2 ,v2!

3d~kW11kW22kW !d~v11v22v!. ~3.5!

From Eq.~3.4! we find that

Qmg
0 q̃ma5Qmg

0
@dba2Qba

0 #

ivg1L1kW•kW
Re$D̃m

a +Ẽa* ~kW ,v!%. ~3.6!
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A similar expression is obtained forq̃mdQdg
0 . Solving these

for q̃md ,

q̃md5~@dda2Qda
0 #dgm1@dma

2Qma
0 #dgd!

Re$D̃g
a+Ẽa* ~kW ,v!%

ivg1L1kW•kW
. ~3.7!

As expected,q̃md is symmetric andq̃mdQmd
0 50. Finally, by

taking the Fourier transform of Eq.~2.10!, it follows that

klklEm2kmklEl1mmv2~D̃m1Q̃
ml

+D̃l
a!50, ~3.8!

whereQ̃md5Q̃md
0 1q̃md andQ̃md

0 is the Fourier transform o

Qmd
0 . Then, substitution ofq̃md from Eq. ~3.7! into Eq. ~3.8!

yields

klklEm2kmklEl1mmv2S e'~kW ,v!Ẽm~kW ,v!

1Q̃ml
0 ea~kW ,v!Ẽl~kW ,v!1~@dda2Qda

0 #dgm

1@dma2Qma
0 #dgd!E dkW1dkW2dkW3dv1dv2dv3

3
ea~kW1 ,v1!ea~kW3 ,v3!

ig~v11v2!1L1ukW11kW2u2

3Re$Ẽg~kW1 ,v1!Ẽa* ~kW2 ,v2!%Ẽd~kW3 ,v3!d~kW11kW21kW3

2kW !d~v11v21v32v!D 50, ~3.9!

which is a closed nonlinear equation, valid in the wea
nonlinear regime, for an arbitraryẼl(kW ,v) propagating in a
nematic liquid crystal with an initially stationary configura
tion Qda

0 . Next we derive the amplitude equation for a wa
packet from Eq.~3.9! by using a general operational proc
dure.

IV. AMPLITUDE EQUATION

Let us consider a wave packet of narrow bandwidthm

5Dv/v0!1, central frequencyv0 , and wave vectorkW0 ,
which travels in the nematic liquid crystal. We restrict o
derivation to the case when the field is linearly polarized a
propagates along the principal axis of the uniaxial station
configurationQda . In a coordinate system where thez axis
is parallel to the principal axis,Qda is diagonal. We look for
a solution of Eq.~3.9! of the form

Ẽm5m@Ã~kW ,v!1Ã~kW ,2v!#xm , ~4.1!

wherexm is a unit vector perpendicular toz and Ã(kW ,v) is
assumed to have a pronounced peak atkW0 ,v0 so thatA(rW,t)
is a slowly varying function of space and time. In additio
we assume the following operational expressions for the
quency and wave-vector@11# components of the whole nar
row wave packet:
d
ry

,
-

v5v01m
]

]T
, ~4.2!

kz5k01m
]

]Z
1m2

]

]Z2
1•••,

~4.3!

kx5m
]

]X
, ~4.4!

ky5m
]

]Y
, ~4.5!

wheret5mT is the time andz5mZ15m2Z2 andZ2.Z1 are
different longitudinal length scales that correspond to su
rior harmonic contributions@12#. The field amplitude and the
wave-packet bandwidth are scaled by the same small pa
eterm, which is the appropriate scaling for Kerr-like medi
Substitution of Eq.~4.1! into Eq. ~3.9! giveskx50 and

m@mmv2e~kW ,v!2ky
22kz

2#Ã~kW ,v!

12m3@12Q11#E dkW1dkW2dkW3dv1dv2dv3

3
ea~kW1 ,v1!ea~kW3 ,v3!

ig~v11v2!1L1ukW11kW2u2

3d~kW11kW21kW32kW !d~v11v21v32v!

3A~kW1 ,v1!A* ~kW2 ,v2!A~kW3 ,v3!50. ~4.6!

We have introduced the abbreviatione5e'1eaQ11. Note
that if we solve this problem for the case where the direc
is parallel to the electric vector the nonlinear term vanish
as expected; hence we consider only the case when th
rector and the field are orthogonal.

Substitution of Eqs.~4.2!–~4.5! into Eq.~3.9! and expand-
ing in a Taylor series leads to a partial differential equat
for A(rW,t). Since A(kW ,v) varies rapidly nearkW0 ,v0 , we
keep terms only up to third order inm. Expanding the last
term in Eq.~4.6! gives

E dkW1dkW2dkW3dv1dv2dv3

ea~kW1 ,v1!ea~kW3 ,v3!

ig~v11v2!1L1ukW11kW2u2

3d~kW11kW21kW32kW !d~v11v21v32v!

3A~kW1 ,v1!A* ~kW2 ,v2!A~kW3 ,v3!

'
ea~kW0 ,v0!ea~kW0 ,v0!

igv012L1ukW0u2
A~rW,t !A* ~rW,t !A~rW,t !

1
ea~kW0 ,v0!ea~kW0 ,2v0!

2L1ukW0u2
A~rW,t !A* ~rW,t !A~rW,t !

1O~m!, ~4.7!

where we have chosen the coupling conditions given bykW1

1kW252kW0 andkW352kW0 , which correspond to self-focusin
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@11#. We have also takene(k0 ,2v0)5e(k0 ,v), assuming
absorption to be negligible. By grouping terms of the sa
order inm we find

m: 2k0
21mmv0

2e~v0!50, ~4.8!

m2: 2ik0

]A

]Z1
1 i

]

]v
~mmv0

2e!
]A

]T
50, ~4.9!

m3:
]2A

]Y2
12ik0

]A

]Z2
1

]2A

]Z1
2

2
1

2

]2

]v2
~mmv0

2e!
]2A

]T2

1mmv0
2
ea

2~v0!uAu2A

2L1k0
21 iv0

1mmv0
2
ea

2~v0!uAu2A

2L1k0
2

50.

~4.10!

Equation~4.8! is the linear dispersion relation and Eq.~4.9!
shows that, to first order, a wave packet travels at the gr
velocity. Finally, substitution of Eq.~4.9! into Eq. ~4.10! to
eliminateZ1 gives

]A

]Z2
2

i

2k0

]2A

]Y2
1

i

2

]2

]v2S v0Ae'

c D ]2A

]T2
2 i

ea
2~v0!

e'

uAu2A

2L1k0

2 i
k0

v0g

ea
2~v0!

e'

~b2 i !uAu2A

b211
50, ~4.11!

where b52L1k0
2/v0g. This is the NLS equation with an

additional complex quadratic term whose real part is prop
tional to the viscosityg. This real part takes into accoun
dissipation by the nematic liquid crystal associated with
reorientation process. It is interesting to note that Eq.~4.11!
reduces to an equation of the form used by McLaugh
et al., which describes the finer scale of undulation and fi
mentation@6# for the time-independent]A/]t50 and loss-
lessg50 case. Equation~4.11! takes into account the dis
persion, self-focusing, and diffraction as well as dissipat
by the nematic liquid crystal.

It is straightforward to show that the last term of E
~4.11! is small by substituting numerical values for a typic
nematic liquid crystal:L1510211N, g51023 K g s21 m21,
and optical frequencyv053.831015 rad/s. This gives the
value b51.331029; hence the fifth term is approximatel
real and much smaller than the fourth term. From the fou
term we obtain the nonlinear indexn2

nem as @11#

n2
nem5

ea
2

e'k0
2L1

. ~4.12!

For typical valuesea50.64e0 , e'52.25e0 , wheree0 is the
permittivity of the vacuum, and the parameter values giv
aboven2

nem51.0310221 (km/V)2, which is seven orders o
magnitude larger thann2

SiO251.2310228 (km/V)2. This is
the giant nonlinearity expected for a liquid crystal@1#. An-
other physical quantity that can be estimated is the coe
cient of the third term of Eq.~4.11!, the dispersion. Using
e

p

r-

e

n
-

n

l

h

n

-

n0511n0
01

g0
1

v1
22v2

1
g0

2

v2
22v2

, ~4.13!

where n0
050.4136, v158.931015 rad/s, v256.68

31015 rad/s, g0
154.831030 (rad/s)2, and g0

251.66
31030 (rad/s)2 for 4-pentyl-48-cyanobiphenyl~5CB! from
Ref. @14#, we find @d2(kn0)/dv2(5CB)'1.1
31024 ps2/km#. Thus the width of a picosecond pulse tra
eling in 5CB in the linear regime is doubled in a distance
0.1 m, while in glass@(d2kno /dv2) (SiO2)51.8 ps2/km#
it is doubled in a distance of 0.5 km. This is consistent w
liquids being considerably more dispersive than solids.

V. SOLITON: ONE-DIMENSIONAL SOLUTION

We next restrict ourselves to the one-dimensional~1D!
case. This means that we ignore the diffraction te
]2A/]Y2. Equation~4.11! can then be rewritten in terms o
dimensionless variables as

]Ā

]Z̄
1 i

]2Ā

]T̄2
2 i uĀu2Ā2buĀu2Ā50, ~5.1!

whereĀ[A/A0 , Z̄[Z2 /Z0 , and T̄[T/T0 . HereA0 is the
energy density of the optical pulse andZ0 ,T0 are the length
and time scales given by

Z05
2e'k0L1

A0
2ea

2
~5.2!

and

T0
25

2e'k0L1

ea
2A0

2

]2S v0

c
Ae'D

]2v2
. ~5.3!

Sinceb is small in Eq.~5.1!, we consider the last term as
perturbation of the NLS equation, whose soliton type so
tion is given by@11#

A52hsech@ T̄2Z̄~dk/dv!Z0 /T0#

3exp@ ik~v0!Z0Z̄2 iv0T0T̄#, ~5.4!

where h5A0 . This kind of perturbative term has bee
treated previously@13# and it is found that it only modifiesh
in Eq. ~5.4! as

dh

dZ̄
52

8

3
bh3. ~5.5!

By imposing the initial conditionh(Z̄50)51 leads to

h~ Z̄!5
1

A1116bZ̄/3
. ~5.6!
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This expression shows that dissipation due to reorienta
makes the soliton amplitudeh decrease with the distance.h
falls half its initial amplitudeA0 when the soliton has trav
eled the distanceZā59/16b.

We estimate the length and time scales of this pulse gi
by Eqs.~5.2! and~5.3!. For a 500-mW laser atl50.5mm to
a beam waist of 10mm, the field amplitude isA0

251.9
3106 V/m. Then, by using the material values given abo
this leads to the spatial and temporal scales for the p
Z054.231025 m andT050.21310211 s.

From Eq. ~5.4! we find that the soliton propagates wi
the speedv̄5v/c,

v̄5
dv

dk

Z0

T0
5

n

c

1

A0
A l0

2pn2d2~kn0!/dv2
~5.7!

and for our valuesv̄nem50.1, which is one order of magni
tude smaller than the speed of lightc in vacuum and has the
same asv̄SiO252.531021. The difference betweenv̄nemand

v̄SiO2 comes from the productn2d2(kn0)/dv2 in Eq. ~5.7!,
which measures the balance between nonlinearity and dis
sion.

Finally, the characteristic distance over which the solit
loses half of its initial amplitudeA0 is given byzd5Z0Za ,
which leads tozd

nem512 km. The corresponding distanc
for SiO2 is zd

SiO2550 km, which is larger thanzd
nem due to
l.

n,

,

D

n

n

,
se

er-

n

losses associated with the reorientation of the nematic liq
crystal. It is important to note thatzd

SiO2 was calculated@15#
assuming a linear lossy perturbative term of the form
2gA, in contrast with the nonlinear term in Eq.~5.1!. It is
interesting to point out that some other solutions of the st
dard NLS equation that are not solitonlike, but are inste
wavelike coherent structures also may be solutions@16# of
the perturbed equation~5.1!.

VI. SUMMARY

We have derived a nonlocal and retarded equation for
electric field in the bulk nematic liquid crystal in the weak
nonlinear regime. From this we derived a nonlinear Sch¨-
dinger equation for the amplitude that takes into acco
self-focusing, dispersion, diffraction, and dissipation in t
nematic liquid crystal. We have shown the existence o
solitonlike ~1D! solution and we estimated its speed, tim
and length scales and absorption length.
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