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Nonlinear Schrodinger equation in nematic liquid crystals
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We derive the amplitude equation, in the weakly nonlinear regime, for an optical wave packet that propa-
gates in an initially undistorted nematic liquid crystal. By using the dyad represen@tjornwe find the
retarded and nonlocal equation for the nematic configuration and solve it in Fourier space. This allows us to
calculate the amplitude dependent dispersion relation for a nematic liquid crystal in a given initial undistorted
stationary state. We consider a linearly polarized wave packet that travels along the principal axis of the
nematic dielectric tensor. We find a nonlinear Sclimger equation for the amplitude, which includes an
additional quadratic term with dissipation.
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PACS numbefs): 61.30.Gd, 77.84.Nh, 42.65.-k

I. INTRODUCTION linear and as a consequence the nonlocal effects can be
readily incorporated.

In recent years there has been a great deal of interest in The outline of the paper is as follows. In Sec. Il we derive
the nonlinear optics of liquid crystals because of the gianfrom the Hemlholtz free energy the dynamical equation for
optical nonlinearity of these materiala factor of 6-10 or- the dyadQ;; in terms of the nonlocal polarization vector. In
ders of magnitude largdd] than that of doped glasseand  Sec. lll we expres®); in terms of the electric field for a
the strong nonlinear effecfg] that can be achieved in nem- Weakly nonlinear regime and find a closed nonlocal and re-
atic liquid crystals by using laser with moderate intensitytarded equation for the electric field. In Sec. IV, we consider
(kW/cn?). Some recent experimenf8] using continuous the amplitude equation for a_lln_early polarized ngrrow_—band
beams have shown the presence of steady spatial patterns e packet and show thaj[ it is the NLS equation with an
cylindrical [3] and planaf4] geometries. The basic mecha- a d|t|onall c_omplex quadratic term. In Sec. V we calculate
nism that governs these time-independent patterns is the pejaracteristic parameters of the soliton and compare them

. . : with those in glass fibers. In Sec. VI we summarize our re-
ance between the nonlinear refractiself-focusing and the Sults
spatial diffraction of the nematic liquid crystal. A study of '
these experiments using separation of scdied] shows that
the field amplitude at the center of a Gaussian béiamer
solution follows a nonlocal nonlinear Schimger (NLS) The Hemholtz free energy for a nematic liquid crystal in
equation that is able to describe the undulation and filametahe presence of an external optical fiélg can be written as
tion observed in the experiments.

A distinct result is obtained when the propagation of wave
packets instead of continuous beams is considered. In this
case there exists the possibility of stable and robust solitary
wave solutions(optical soliton$ when the equilibrium be- where the energy densit¥ is given by[8]
tween dispersion and self-focusing is reached. This possibil-
ity for a planar waveguide in a specific distorted configura- 1 2 Ls
tion has been previously considergd; however, the lossy 7= 73BQ“V%Q“7+ 7(9“Q“7%QB7+ 75“QBV(97Q5“
and nonlocal aspects of the director dynamics were ne- . s
glected. ~ DuEL+DLEL Qu

The aim of the present work is to take into account the 2 2
time dependence and nonlocal effects both in the light and in
the nematic liquid crystal by using the dyad representationvhereL,, L,, andL3 are elastic constant,,=n,n,,
Q;j of the nematic orientation in describing optical pulseswith n, the nematic director, anB ,,D?% are displacement
that travel in a nematic material. One of the advantages ofectors defined by the nonlocal and retarded relations
the dyad representation is that in the weakly nonlinear re-
gime the relation betwee®;; and the electric field dyad is

Il. BASIC EQUATIONS

F= LdV]-‘, 2.1

(D2EL+D¥*Ep), (2.2

DQ(F,I)ZJ dr'3dt’ e, (r—r' t—t)E, r't') (2.3
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- R . . . well's equations, it is straightforward to show that the elec-
D‘;(r,t)=f dr'3dt’ e,(r—r',t=t")E,(r',t'). (24  tric field propagating in a nonmagnetic nematic is governed
by the equation
Equation(2.2) assumes that the degree of orientational order,
usually described by the order parameSeis constant. This
is a reasonable approximation for temperatures far from the
nematic-isotropic transition and for modest fields.

To obtain the equation of motion it is necessary to dedn Sl units. Hereu, is the magnetic susceptibility arid,
scribe the generalized thermodynamic force acting on thand D are given by Eqgs(2.4). Notice that Eqs(2.9) and
dyadQg, . For this purpose we calculate the variationof (2.10 provide the complete general coupled dynamics of the
in Eq. (2.2 with respect toQ,z, with the constraints that nematic liquid crystal and electromagnetic field in the dyad

Qj, is idempotent and symmetric, which follows fromn ~ representation.
=1. In the spirit of Ref.[9] , we write the free energy in

(92
9,Ex—0\d,E,+ ,umﬁ(D)\-i—QMDZ):O (2.10

terms of the nonsymmetrlc and nonidempotent terﬂsgg l1l. WEAKLY NONLINEAR DYNAMICS

_Qa,8+QBa (QayQ7B+QBaQav)/2 and consider varia- We consider the weakly nonlinear regime where the di-
tionso,, of the t_ensoQB)\_(r) such thair,, vanishes onthe rector is weakly distorted by the field. We consider a linear
sample boundaries. In this way we obtain perturbannqw of a given initial stationary stat@m, that

is, Qyp= Qx +0, - Substitution of this expression into Eq.
PN} 0 0 B B
Q)\ﬁ_Qaﬁ+[(5)\a_Q)\a)5ﬁ;L+(6ﬁa_QEa) 5)\M]UMDEé 5) (2 9) y|e|dS

dCb\

whereQY ; is an arbitrary tensor about which variations are YL =[(Sa— Qo) 35+ (850— Q%) 81 ]
considered. The term in the square brackets is a projection
operator that projects out parts of,, that give rise to the X(L105050,at Re{DzEz}), (3.
nonsymmetric and nonidempotent contributions. Substitution
into Eq.(2.1) gives where we have kept only terms lineardp, . In general, the

unperturbed stat® ,, has to satisfy the condition

— T 37
F=Fo- f DVSVERE (2.6 [(8va= Q) 8puT (50— Qo) 91110595 Qpue =0
3.2

where Py p= = (0F15Q,.)[ (810 Qua) Sput (8pa  For simplicity, here we restrict our analysis to a configura-

—Qg4) 61 ] Sinceo g is an unconstrained variatioh, g is  tion such thawgangLa:O. We proceed to solve the linear
the thermodynamic force acting onQ,;. Here equation forg, 5 [EQ. (3.1)]. The Fourier transform ad, 4 is
0F15Qyz=—h,z is the molecular field of de Genngs0].
The dynamical equation fd@, 4, in the absence of flow, is
given by the equilibrium betweeTmM; and the viscous force,
that is,

aAB(R’w):J ele_lwtq}\ﬁ(F,t)dsx dt (33)

In terms of this, Eq(3.1) gives

0Qys ~
y m”’):hw’ 2.7) {(ioy+L1K-K) 85, L1K-KQ2,} Q0 Uy

. o . =Q%,[8pa— QR IREDIES (K,0)}, (3.4
wherey is a viscosity coefficient.

We restrict our analysis to consider the simple case of awhere we have multiplied through l@ﬁ and used its idem-

equal elastic constant approximatioi €K, =K,=K3;) for potent property QMQM Q° . Here TEa(IZ,w) and

Yo
which L,=0. In this case D .(k,») denote the Fourier transforms of the displacement

and the electric field vector, respectively, anithdicates the

_ ap*
Nap=L10,0uQq,+ REDGEL}, 28 onvolution defined by

where Re denotes the real part; thus the equation of motion BaoE*(k )

given by

7 _[(6}\a Q}\a)ﬁﬂ,u.—i_(ﬁﬁa Qﬁa)a}\/i]

X{L104,0,Q 0t RE D‘ZE’;)}. (2.9
From Eq.(3.4) we find that

[ Qﬁa a Fx
—+L PR Re{D E (k w)} (3.6)

It is important to point out that Eq(2.9 reduces to the
corresponding equation fon [9] if we substitute Q,, 0y =
- . e Qp,yq,ua Q,u'y
n, . Following the usual procedure for decoupling Max-
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A similar expression is obtained far, Q2. . Solving these d
~ P ooy g w=wotu—=, (4.2
for q,s, aT
6= ([ 850 Q3,18,,+[8,a J 9
u Sald Cyu " ) kZ:kO—’_Mﬁ—’_M 97 —t--,
_Q° 15, e{ D3oEh(k,w)} @7 ’ 4.3
wed Y oyt LK K ' ;
~ ~ K= p—, 4.4
As expectedq,, s is symmetric anch;Q?w: 0. Finally, by xH X .9

taking the Fourier transform of E@2.10), it follows that
d

knKy\E . — K, K\E\ + umo?(D ,+ Qmob";) =0, (3.8

~ ~ ~ ~ _ H H — —,,2
whereQ, s=Q%,+10,s andQ?; is the Fourier transform of wheret=puT is the time an@=uZ, = u"Z, andZ,>Z, are
o Th #b titution G "f Eq.(3.7) into Eq.(3.8 different longitudinal length scales that correspond to supe-
;giglij.s en, substitution ofy,,; from Eq.(3.7) into Eq. (3.8 rior harmonic contributiongl2]. The field amplitude and the

wave-packet bandwidth are scaled by the same small param-
eter u, which is the appropriate scaling for Kerr-like media.

KnKyE,— K, Ky Ep+ pm?| €, (K,0)E, (K o) Substitution of Eq(4.1) into Eq. (3.9) givesk,=0 and

co o o= oo 0 L pmo?e(k,0) = kj—KZJAK,»)
+Q,u,)\6a(krw)E)\(krw)+([55a_Q§a]5'yp.

o +2M3[1_Q1ﬂf dlzldlzzdlz3dw1dw2dw3
+[8,0—Q%.18,5) f dk,dk,dk;dw;dw,dws

Ga(lzbwl) Ga(|23,w3)
i y( w1+ wp) + L|Ky +Ky|2

€a( E1a(1)1) fa(Ea,ws)

i Y(@1+ wg)+ Ly Ky +Ko|?

- N - N - N N N N X6('21"'|22+l23_|2)5((1)1+(1)2+(1)3_(1))
X Re[E,(Ky,01)E} (Kp,02) }E 5(K3, w3) 8(ky + kp+ K3 . . .
XA(Ky, w1)A* (Kp, w2)A(Kz, w3) =0. (4.6

—K)8(w1+ @+ 03— w)) =0, (3.9  We have introduced the abbreviatier e, +€,Q;;. Note
that if we solve this problem for the case where the director
which is a closed nonlinear equation, valid in the weaklyis parallel to the electric vector the nonlinear term vanishes,.
as expected; hence we consider only the case when the di-
rector and the field are orthogonal.
Substitution of Eqs(4.2—(4.5) into Eq.(3.9) and expand-
ing in a Taylor series leads to a partial differential equation
for A(r,t). Since A(k,w) varies rapidly nearko,wo, we
keep terms only up to third order i@. Expanding the last
term in Eq.(4.6) gives

nonlinear regime, for an arbitra@x(lz,w) propagating in a
nematic liquid crystal with an initially stationary configura-
tion QJ,. Next we derive the amplitude equation for a wave,
packet from Eq(3.9) by using a general operational proce-
dure.

IV. AMPLITUDE EQUATION
fa(ELwl) fa(Ea,wa)
i Y(w1+ w3)+ LKy +Ko|?

Let us consider a wave packet of narrow bandwigth

=Awl/wy<1, central frequencyw,, and wave vectowzo,
which travels in the nematic liquid crystal. We restrict our

f d kld k2d k3dw1dw2dw3

derivation to the case when the field is linearly polarized and X 8(Ky+ Ko+ Kz—K) 8( w1+ 0+ 03— )

propagates along the principal axis of the uniaxial stationary R o .

configurationQs, . In a coordinate system where thexis XA(Ky, 01)A™ (K, 02) A(Kz, @3)

is parallel to the principal axi®Q s, is diagonal. We look for K K

a solution of Eq/(3.9) of the form - Ea? 0, o) €al 8””0) A(F.DA* (F AT )
- SO, i ywo+2L4|ko|?
E.=ulAK,0)+AK,—o)]X,, (4.2 . .

. n fa(kO:wo)fa(ko,_wo)A T OA* (FDACF
wherex,, is a unit vector perpendicular wandA(k, ) is 2L1|IZ0|2 (rOAT(rHA(r,Y
assumed to have a pronounced peal?oatoo so thatA(rt)
is a slowly varying function of space and time. In addition, +0(u), (4.7)

we assume the following operational expressions for the fre-
quency and wave-vect¢f 1] components of the whole nar- where we have chosen the coupling conditions giverkpy
row wave packet: + k2—2k0 and k3— — ko, which correspond to self-focusing
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[11]. We have also takeg(ky,— wg) = €(kg,w), assuming g 92
absorption to be negligible. By grouping terms of the same ng=1+ n8+ 5 0 >t 0 5 (4.13
order inx we find 0Wi—w W, w
p — K+ ppwle(wo) =0, (489 where ng=0.4136, «;=8.9x10" radls, ,=6.68
X 10'° rad/s, g3=4.8<10®° (rad/sf, and g3=1.66

JA J JA X 10°° (rad/sy for 4-pentyl-4-cyanobiphenyl(5CB) from
w?: 2iko 7 i —(mege)—T=o, (4.9 Ref. [14], we find [d?(kng)/dw?(5CB)~1.1
9z, e J X 10~* ps/km]. Thus the width of a picosecond pulse trav-
eling in 5CB in the linear regime is doubled in a distance of
PA A PA 1 &P , (O°A 0.1 m, while in glasg (d%kn,/dw?) (Si0,)=1.8 pg/km]

3. . . . e . .
© ﬁ+2lk°(9_22+ 72 2 awz(ﬂmwof)ﬁ it is doubled in a distance of 0.5 km. This is consistent with
1 liquids being considerably more dispersive than solids.
, €a(wo)|AIPA , €alwo)|AIPA
T Um0 T T T umwy = V. SOLITON: ONE-DIMENSIONAL SOLUTION

“O oL K2+ i wg 2L k2
4.10 We next restrict ourselves to the one-dimensioidD)
case. This means that we ignore the diffraction term
§°AldY?2. Equation(4.11) can then be rewritten in terms of

Equation(4.8) is the linear dispersion relation and E¢.9) Bimensionless variables as

shows that, to first order, a wave packet travels at the grou
velocity. Finally, substitution of Eq(4.9) into Eq. (4.10 to

.. . 2
eliminateZ, gives 3_é+i g—i|A|2A—ﬁ|A|2A=O, 5.1
YA
A i PA i 3 [woe |PA  €wo) |AIPA
dZ, 2Kq ay2+ 2 9w\ C IT2 I €, 2Lkq whereA=A/Aq, Z=2Z,/Z,, andT=T/T,. HereA, is the
energy density of the optical pulse adg, T, are the length
ko €(wo) (B—1)|APA and time scales given by
—i =0, (4.11
woy € B?+1
_2€lk0|_1 5 2)
where 8=2L,k3/wyy. This is the NLS equation with an Az ®
additional complex quadratic term whose real part is propor-
tional to the viscosityy. This real part takes into account and
dissipation by the nematic liquid crystal associated with the
reorientation process. It is interesting to note that @dql1) o[ @0
reduces to an equation of the form used by McLaughlin 2¢ kil d (T Q)
et al,, which describes the finer scale of undulation and fila- ng é 02 1 (5.3
mentation[6] for the time-independentA/dt=0 and loss- €70 Pw?

less y=0 case. Equatioii4.11) takes into account the dis-

persion, self-focusing, and diffraction as well as dissipationSinceg is small in Eq.(5.1), we consider the last term as a

by the nematic liquid crystal. perturbation of the NLS equation, whose soliton type solu-
It is straightforward to show that the last term of Eq. tion is given by[11]

(4.17) is small by substituting numerical values for a typical

nematic liquid crystall;=10""N, y=10"°Kgs 'm*, A=27sechT—Z(dk/dw)Zy/To]

and optical frequencys,=3.8x 10'° rad/s. This gives the

value B=1.3x10"9; hence the fifth term is approximately X exgik(wg)ZoZ—iweToT], (5.4)
real and much smaller than the fourth term. From the fourth
term we obtain the nonlinear inde®°™ as[11] where p=A,. This kind of perturbative term has been
treated previously13] and it is found that it only modifieg
2 in Eq. (5.4 as
nem €a
2= (4.12
e Kol
dzy 8 4

For typical valuese,=0.64¢, €, =2.25,, whereg, is the dzZ

permittivity of the vacuum, and the parameter values given

aboven)®™=1.0x 10"2* (km/V)?, which is seven orders of By imposing the initial conditiony(Z=0)=1 leads to

magnitude larger than?oz: 1.2x10 28 (km/V)?. This is

the giant nonlinearity expected for a liquid crysfal. An- _ 1
other physical quantity that can be estimated is the coeffi- NZ)= ——. (5.6)
cient of the third term of Eq(4.11), the dispersion. Using V1+168Z/3
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This expression shows that dissipation due to reorientatiotosses associated with the reorientation of the nematic liquid
makes the soliton amplitudg decrease with the distancg.  crystal. It is important to note thaﬁ'oz was calculated15]
falls half its initiﬁmplituder when the soliton has trav- assuming a linear lossy perturbative term of the form
eled the distanc&,=9/168. — A, in contrast with the nonlinear term in E¢.1). It is

We estimate the length and time scales of this pulse giveinteresting to point out that some other solutions of the stan-
by Egs.(5.2 and(5.3). For a 500-mW laser at=0.5umto  dard NLS equation that are not solitonlike, but are instead
a beam waist of 1@m, the field amplitude isA3=1.9  wavelike coherent structures also may be solutigt& of
x10° V/m. Then, by using the material values given above the perturbed equatiof®.1).
this leads to the spatial and temporal scales for the pulse
Zo=4.2x10"° m andT,=0.21x10 ! s,

From Eq. (5.4 we find that the soliton propagates with VI. SUMMARY
the speed =v/c, We have derived a nonlocal and retarded equation for the
electric field in the bulk nematic liquid crystal in the weakly
= d_wé: n i Ao (5.7) nonlinear regime. From this we derived a nonlinear Schro
dk To € Ao V 27n,d%(kng)/dw? ' dinger equation for the amplitude that takes into account

- self-focusing, dispersion, diffraction, and dissipation in the

and for our value®"®™=0.1, which is one order of magni- nematic liquid crystal. We have shown the existence of a
tude smaller than the speed of lighin vacuum and has the solitonlike (1D) solution and we estimated its speed, time
same ag5'%2=2.5x 10", The difference betweam™and  a@nd length scales and absorption length.
v51% comes from the produat,d?(kng)/dw? in Eq. (5.7),
which measures the balance between nonlinearity and disper-
sion.

Fina”y, the characteristic distance over which the soliton This work was supported in part by the NSF under AL-
loses half of its initial amplitudé\, is given byzy=ZoZ,,  COM Grant No. 89-DMR20147 and by AFORS under
which leads tozg*™=12 km. The corresponding distance MURI Grant No. F49620-17-1-0014. We acknowledge use-

for SiO, is zji02=50 km, which is larger tham;®™ due to  ful discussions with W. Van Saarloos.
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